
Distributed Version Control Systems

Dipl. Medieninformatiker (BA) Daniel Kuhn
Master degree course Computer Science and Media

Hochschule der Medien
Nobelstrasse 10, 70569 Stuttgart
e-mail: dk047@hdm-stuttgart.de

July 2010

Abstract
Traditional centralized Version Control Systems (VCS) as
e.g. CVS and SVN, which were used since the 1980’s in al-
most every company, are facing competition by a new ap-
proach to source code management. Distributed Version
Control Systems like Bazaar, Darcs, Mecurial and Git are
changing the way repositories are stored and distributed by
representing a new and more contemporary mindset. Today
Distributed Version Control Systems have therefore become
very popular in the open-source community with many de-
velopers using them.

This paper aims to show the requirements, advantages
and disadvantages of Distributed Version Control Systems
and discusses the differences to Centralized Version Control
Systems us the software Git as an example. The document
shows and explains the functionality of the system and takes
a look under the hood by not focusing on the use of the tool,
but by rather analyzing how the tool handles its tasks.

1. Introduction
Since the 1970’s Version Control Systems have been used
to archive and manage different versions of files, especially
source code. Version Control started in 1972 with the re-
lease of the first system called Source Code Control Sys-
tem (SCCS). SCCS was developed to manage source code,
configuration-files or documentations and focused on man-
aging single files and single users. SCCS has brought fea-
tures like: letting developers keep track of the history of a
file, using checksums to detect data corruption, using a for-
ward delta system and providing support for binary files [3]
[4].

Another early version control system is the Revision
Control System (RCS), developed in the 1980’s. Just like
SCCS, RCS is a file-based, single-user oriented version
control software that simply stores different versions of files
in the file-system. But unlike SCCS, RCS keeps no track
of the history of a file and does not provide checksums for

integrity checks. Both SCCS and RCS are Version Control
Systems that use a locking mechanism to lock files for other
users when they are edited.

1989 the more familiar Concurrent Versions System
(CVS) was developed as an improvement of RCS. CVS
showed many additions like the support for multiple files
and the support for multiple users. But the major advantage
of CVS was support for merging concurrently changed files
instead of using a locking mechanism. This enabled devel-
opers to work collaboratively on their projects. But CVS
had some restrictions concerning the handling of directo-
ries and binary-files. With the growth of the internet, users
of CVS criticized the lack of supporting a native remote ac-
cess in CVS and demanded for a solution. So in 1994 a
group of developers implemented an extension to use CVS
over TCP, which was a large improvement to CVS, which
could now be used easier over the internet.

Later in the year 2000 a company called CollabNet de-
cided to develop a replacement system for CVS. So Ben
Collins-Sussman, Brian Behlendorf and Jason Robbins of
CollabNet started the Subversion (SVN) Project. The sub-
version CVS is still being used today and considered an in-
dustry standard. Subversion is an Open-Source Software
in accordance with the Debian Free Software Guidelines
(DFSG)1. Subversion brought many advantages to develop-
ers like better file-handling, including a directory structure,
which lead to more focus to the project instead of only files.
SVN has real atom commits ensuring consistency, better
branching and tagging and an abstract repository interface
for an easy development of different access methods. [5]

As of today, Centralized Version Control Systems - es-
pecially Subversion - are the top-dogs in companies. With
Bitkeeper, developed in 1997, there was another approach
to source control management: Distributed Version Con-
trol Systems. These systems have become more and more
popular with the development of Git, Mercurial, Bazaar and
Darcs.

1http://www.debian.org/social_contract#guidelines

1

Git is a Distributed Version Control System (DVCS) in
development since 2005 as an open-source project started
by Linus Torvalds. The Git project was started with the in-
tention of replacing the proprietary Bitkeeper DVCS used
to maintain the linux kernel and free to use for open-source
projects. After the Bitkeeper developers decided to change
their licensing policy Linus Torvalds project leader of the
linux kernel, started looking for an appropriate replacement,
which he ultimatly couldn’t find. Therefore Torvalds de-
cided to design the Git DVCS to meet the needs of the ker-
nel and its developers.

2. Polymorphism of Version Control
Systems

One of the easiest “versioning systems” is local and man-
ual versioning. Everybody has used it, maybe without even
thinking about it as a kind of version control. Local or
manual versioning means to make a copy of a document
and save it under a different name (e.g. myImportantLet-
ter_20100202). This version control system does neither
perform well, nor is it efficient or safe in any way. But it is
easy to use and understand and may fit personal versioning.
However when it comes to a professional level a better ver-
sion control system is needed. So it becomes quite obvious
that version control can be done in many ways and should
always fit the use cases by fulfilling its requirements.

One of the common purposes of Version Control Sys-
tems is to enable groups of people to work together on (any
kind of) files. They can change, archive, merge, branch or
synchronize files of which the system keeps a history. An-
other purpose is archiving and backupping. Content in the
system should possibly be safe and free of data-loss. Com-
bining the two aspects of collaboration and security leads to
Centralized Version Control Systems (CVCS). Traditional
systems like CVS and more common SVN are centralized,
containing only one main repository per project usable by
every member of the group. CVCS are used in most of
the companies and therefore have reached their maturity by
being considered an industry-standard. Aside from CVCS
there is another approach to achieve version control in a
slightly different way. Distributed Version Control Sys-
tems like Bazaar, Darcs, Mercurial and Git use decentral-
ized repositories for versioning data which is spread among
users.

2.1 A quick comparison between centralized
and decentralized VCS

First I’d like to give a more general view of centralization
and decentralization. Comparing the systems most of the
time leads to the same problems. Not only for Version Con-
trol Systems, but for almost every system sharing data be-

tween nodes over distances. When it comes to data storage
and delivery one has to think about general questions like

1. Security – is my data safe?

2. Performance – can I deliver the data quickly?

3. Reliability and Availibility – can the data be accessed
24/7 without downtime?

4. Consistency – is my system state consistent over every
node?

5. Maintenance – can I maintain my infrastructure easily?

These five points are the general requirements of a ver-
sion control system. However some of these requirements
are orthogonal to each other. A system which is performing
well, highly secure, highly reliable, easy to maintain and
always has a consistent system state is hardly possible to
design without spending a tremendous amount of money.

Fact is, if you use a centralized system, it is easy to
backup the data and maintain the servers and storage sys-
tems. But when it comes to scalability and distribution, cen-
tralized systems will not perform well – which can also lead
to general failures. On top of that there is always the risk of
a single point of failure.

The same questions arise when comparing CVCS with
DVCS. A centralized system will always be easier to main-
tain. Servers are mostly in one place and contain many
repositories for multiple projects. This makes it easy to
backup the whole data in comparison to a distributed sys-
tem. DVCS are taking another approach on the backup as-
pect and consistency. The idea is that if you clone a reposi-
tory to your local drive, it contains all the history (including
branches and merges) from that one developer who’s repos-
itory was cloned. But you never see the code of all devel-
opers working on the same project. A developer can imple-
ment a feature and say “hey I’ve got the feature ready, pull
the code if you like” – and if a developer likes to pull that
feature, he does and merges the code right into his reposi-
tory. So there is not just a single development version, like
one might be used from CVCS, but rather multiple versions
of the code. The result being nobody knows the whole sys-
tem state. This approach to development involves a change
of the mindset used in the traditional centralized systems,
because Distributed Version Control Systems focus not on
backup, but rather on easy versioning and the sharing of fea-
tures to a program instead of having only the one version.

Linus Torvalds (in Google tech talk [7]) sees the fact that
everybody pulls from everybody as an advantage, because
your code is distributed and backuped by other developers
and you don’t have to care about it. But I disagree. This may
work for famous developers like Mr. Torvalds, but perhaps
not for the “nooby-open-source-project-contributer”. But
even if everybody pulls your code, this involves only the

2

code of a feature that you released and not your code you
are working on in your development branch (which is only
stored on the local harddrive). If you encounter a data loss
on your machine and you don’t have a local backup, your
progress is lost because nobody pulled from you – yet.

In fact, the same can happen when working with a cen-
tralized repository, but if you use a development branch in
the central repository you can commit unfinished code with-
out interfering with other developers (like in local branches
in DVCS) and without losing your progress in a machine
crash. And assuming that the centralized repository gets
backuped, and the backups are stored in a safe way, the
probability of data-loss is almost 0%. Sure if you haven’t
backuped your central repository and you suffer a crash on
the server, your data is lost, too. But as mentioned before,
backupping a central server environment is not so much up
to a developer, as it is in a distributed environment.

But thats a common problem in distributed systems. On
the one hand you want to know the status of your system,
including all nodes. On the other hand if you want to have
the knowledge of the system-state, you need one central
node with all nodes knowing about it or many messages
going between all nodes, so that every node knows about
the state. This again leads to other problems how data is
passed, how nodes know about each other, problems with
latency and dying nodes, etc.. The DVCS abandon this need
of knowlegde of the nodes by not doing it via software. In-
stead every user trusts another user, which builds a “ring of
trust”. Besides, like in a centralized environment it is nec-
essary to have one or more persons in charge of the release-
management, who decides what comes in the new release
and who has to know who has developed the features.

2.2 Requirements in different roles

Ian Clatworthy in his Paper "Distributed Version Control
Systems - Why and How" [6] describes different perspec-
tives on software development and therefore the require-
ments of a version control system depending which role
one is taking. He sees four views: the developer view, the
release manager view, the community view and the senior
management view.

Developer: A developer sees the operations he can do
better and faster like working disconnected, branching and
merging easier just as working together more easily with
co-developers.

Release Manager: The release manager has an interest
in how the software gets packaged and which features are
in the new version. In the ideal world of a release manager,
one would build “each new version by picking and choosing
[the features] like a lego brick”.

Community: The community view addresses the indi-
vidual developer as the source of the whole project and

therefore the need to combine and motivate more develop-
ers to contribute to their project. The view is less focused
on the features, but more on the mindset behind the dis-
tributed working. As described in the paper, Mark Shuttle-
worths (CEO of Canonical Ltd. developing Bazaar) driving
motivation for developing a DVCS is its “positive impact
on open source communities” by using a more like “wiki
approach”: Which means in an open source project every
newcomer won’t be restricted and thus is able to do changes
and – if the code and feature is good, somebody is going to
pull it from you and it might end up in the release.

Senior Manager: the senior manager view goes to per-
sonnel. The open-source communities have proven that
it is possible given “the right people, the internet and the
right toolset” to make great projects reality by being spread
around the globe. This means that using DVCS new ways
of building companies and teams rise in the means of out-
sourcing, offshoring, agile and home-office.

If one is looking at these four roles, there are different
requirements. The developer wants to work fast and easy,
the release manager wants to build his release easily, the
community wants to share their code and combine it easily
and the senior manager wants to have fast and productive
employees. So if you now consider which Version Control
System is best for which requirement you see, that there is
not the single one solution, but rather the right solution for
the right purpose and maybe even the combination of two
solutions. A developer might be better off with a DVCS, but
in contrast he may have a higher training period and needs a
deeper understanding of Version Control, than using for ex-
ample SVN, which may make the senior manager unhappy.
A Community wants to share their code, but when it comes
to the release it may be easier to have a central repository
and the knowledge about every feature. Combining DVCS
for developers and CVCS for the release management could
be a solution worthy of further investigation.

1. Maintenance – A centralized system will always be
easier to maintain. Servers are mostly in one place
and containing many repositories for multiple projects.
Distributed Version Control Systems are maintained
by every developer and not by a single system admin.

2. Backup – centralization makes it easy to backup the
repositories in one place and store them in a safe way.
Decentralization spreads copies of the code (partly or
entire) to every developer which might have a local
copy. This makes the repository “eventually back-
uped”.

3. Acceptance and Support – CVCS are considered an in-
dustry standard and have been in use for more than
20 years. It is clear that there is today more tool-
support for centralized systems than for decentral-
ized ones – but latter support is steadily increasing

3

growing. Additionally centralized systems are easier
to understand and more appropriate for a one-place-
development company, but If you look at large open-
source projects a centralized system in one place might
have disadvantages in speed and availability

4. Release Management – In CVCS it is easier to release
a new stable Version. The release could be done by
everybody who has access to the repository. In DVCS
forming a release is more complicated because there
is no “single one” version. For a release someone has
to be the release manager who pulls the code from the
developers, merges it, tests it and releases it.

2.3. Social aspects and security

In a company it can be difficult to build and maintain an
access control infrastructure. You have to grant and revoke
rights to systems and servers for every single developer – in-
cluding the version control system. This can quickly lead to
complicated access control policies, without knowing who
has access to which system. As an example: I work at a
company with only one sysadmin, who has to maintain the
whole infrastructure including the creation and maintenance
of CVS rights and key management.

In large companies there may be more restrictions to
“who writes and who don’t” than in a middle-sized com-
pany. So maybe you don’t want do give every developer in
you company write access, so you are picking some devel-
opers who do a great job an give them the rights. But if you
make this circle to small, you may get problems with other
developers. If you make it to big, you have too many people
that are committing and interfering with each other. Same
problems are more concerning in open-source projects, be-
cause you may not give a new contributor complete write
access to the repository.

So in distributed systems you don’t have to care about
commit access. You always have commit access to your
repository, you can branch, you can merge and when your
work is done you can tell everybody to pull from your repos-
itory. You don’t need a sysadmin to give you access to
repositories – the whole distribution process and “rights-
management” is done by the developers amongst them-
selves. So no special write access and no politics is needed.

In a distributed system “security” and code reliability are
archived through a network of trust. Every developer trusts
a few other developers from which they are pulling from.
And these people, trust other persons, and so on. So trust
means you trust the decisions of other developers implicitly
including their trust to others.

2.4. Summary
Searching the web for a good and objective comparison
of centralized and decentralized CVS sometimes looks like
there is a kind of religious war going on between the sup-
porter of each party. The DVCS worshippers blame CVCS
to be the devil in the source-control management universe
and see DVCS as the only way version control should be
done.

Personally, I have been using MS Visual Source Safe and
SVN now for quite some time, and I am happy with SVN.
But when I heard of distributed systems especially Git, I got
curious. Now, after a closer look, I can say that I really like
the way how Git gets work done, how it handles the data and
how easy it can be used. But I don’t think that Git will re-
lieve SVN of its duty, like it is often announced in the web.
I rather think, that Git and SVN perfectly can run side by
side. Git is a good way for large distributed projects (espe-
cially open-source projects) and developers who want more.
And SVN works great in a company having few locations
or even only one, by providing an easy to understand, fast
to learn and easy to use version control without fancy fea-
tures, which fits the need of most developers. Combining
the advantages of a centralized system with the decentral-
ized ones, by using Git for every developer and SVN for
the release repository, where all stable and beta features are
managed, is in my opinion a useful setup – considering that
Git provides a native SVN adapter. It allows developers to
have a performant, available and consistent system by us-
ing the advantages of a central backuped, easy and reliable
system.

Requirement DVCS CVCS
release management O X

usage O X
training period O X

featureset X O
performance X O
data security X O
maintenance O X

backup X X
collaboration X X

Figure 1: Easy feature comparison between CVCS and
DVCS

3. A Technical View on Git
3.1 Requirements
By starting with no dedicated Version Control Software at
all, the linux kernel was maintained the first 10 years by
using tarballs and patches, followed by the use of the com-
mercial Bitkeeper software. Even with no Version Control

4

System, by using patches, there was a decentralized charac-
ter of how the patches were distributed, and like Bitkeeper,
Git was designed with a focus on a decentralized develop-
ment and source code management. But from a technical
view Git is very different from Bitkeeper. A lot of the flows
used in Git, came directly from the workflow learned us-
ing Bitkeeper. The design and implementation of Git was
focused on

1. Distribution - Developers of the kernel are spread all
over the world. Indeed, Git was designed to fit the
linux kernel developers’ needs, but many developers of
large open-source projects (i.e. Samba, Gnome, KDE,
Ruby on Rails, Mozilla, ...) are not working in the
same city or even in the same country. Distribution
also brings advantages and of course some disadvan-
tages with it (discussed later).

2. High-Performance - In a distributed environment
speed is key. Developers don’t want to wait minutes
till an operation is done to check-in, check-out, branch,
merge or diff.

3. Reliability - Developer “A” needs to be sure that every
line of code he puts in the version control system is
stored in a safe way so that Developer “B” is using the
exact same code if he gets the code out of the VCS. If
memory corruption or disk corruption occurring, you
may never know it, unless you see the corruption in the
files when you check them out.

4. Availability - even today a developer may not be al-
ways connected to a network or the internet. But even
without being connected he should be able to version
his code.

5. Content - A Version Control System should not be fo-
cused on files but more on the content in the files.

3.2 Performance

After looking at the needs of a Distributed Version Control
System, especially of Git, it is useful to take a closer look at
the technical side. Contrary to other DVCS like Mercurial
or Bazaar, which are mostly written in Python, Gits major
part is written in C. The code of Git is a mix of C, Perl, TCL,
C++ and Bash-scripts, with about 55% pure C code, 18%
Bash-script, 14% Perl and 6% C++. About 20% of the lines
of code are dedicated to test-suites [2]. Due to its precom-
piled nature, C code is generally faster than code written in
Python, which is an interpreted scripting language. As the
following table shows, these performance differences are
noticeable, if one is comparing between the three DVCS.

Each of the systems were tested 8 times with a repository
containing 12456 changesets and about 30.000 files.2

Commands Git Mercurial Bazaar
Status 0.564s 1.333s 1.941s
Diff 0.609s 1.843s 2.847s

Clone 11.650s 23.755s 240.010s

Figure 2: Performance comparison of Git, Bazaar and Mer-
curial [2]

As one can see in the table, Git is more than twice as fast
(at the diff operation even more than three/four times) com-
pared to Mercurial and Bazaar. One of the reasons is the
use of C instead of python. Another reason could be design
and implementation differences, which’s comparison might
be difficult. Another interesting DVCS is Darcs3 when it
comes to the used programming language. Darcs uses the
functional programming language Haskell4 which is highly
focused on concurrency and parallelism. A functional lan-
guage was chosen to realize the patch-applying mechanism,
efficiently and elegantly. Darcs patch-applying algorithm is
based on the mathematical patch-theory. [9] But the down-
sides of Haskell are speed and memory cost, which makes it
not as performant as Git. A polish blog compared Darcs and
Git in detail, with the conclusion that the main difference is
the difference between science and engineering:

"Darcs represents what is best in the science,
beautiful ideas and [long] waiting for the reply,
approaching infinity. Git, on the other hand, rep-
resents engineering - down-to-earth, mundane,
hairy duct-tape-driven architecture, responding
within seconds.
Choice between darcs and git is simple. We study
darcs, we use git." [11]

For a more detailed benchmark on Darcs, see [10]. Brief
summary: One key role of the performance of a DVCS, is
the use of the appropriate programming language, but there
are more parts not regarding the implementation but the de-
sign of the system itself. For example, today the linux ker-
nel is the biggest open-source project with 22.000 files (in
May 2007). As mentioned in the beginning, the community
has had Git in use now for 5 years, and they are doing 4.5
merges in average every day. These merges are done au-
tomatically by Git or have to be done manually. So there
is a need for a good performance even with that many files
in the repository. In centralized systems developers have to
go through the network to do branches, merges or diffs and
most of the time the network becomes the bottleneck. Thus

2The full conditions of the benchmark can be viewed at
http://www.infoq.com/articles/dvcs-guide#sectionbench

3http://www.darcs.net
4http://www.haskell.org/

5

not going over the network is a huge advantage. Especially
if developers are spread over countries. In decentralized
systems every developer has his own local repository on his
hard-drive. This makes all operations very fast and a de-
veloper can even work without a network connection. But
there are disadvantages as well, as discussed in 2.1.

3.3 Distribution and Availability

As described, developers may be spread all over the world
in a distributed scenario. This means they sometimes do
not have access to a central repository. The solution to this
problem in a Distributed Version Control System is to give
every developer has his own local repository on his hard
drive - with no central repository where every developer
checks-in and checks-out. Instead, a developer can share his
code with other developers, with them deciding if they want
to pull the code or not. The positive side-effect of this form
of distribution is availability. As a result of a local reposi-
tory check-ins, check-outs, merges, branches and diffs are
cheap operations which don’t const much time because one
does not have to go over the network. Besides performance
advantages, working locally brings advantages in availabil-
ity. A developer doesn’t need to be connected to the internet
or a company network (i.e. over VPN), but can rather work
offline - even on an airplane.

3.4 Reliability

Reliability means that the code put into the repository is
stored in a safe way and is exactly the same when pulled
out of the repository. Reliability also means, that the code
is safe through the means of backup and distribution. Re-
liability in Distributed Version Control Systems is achieved
through 3 things: distribution, trust and consistency. Be-
cause developers share their code, the code will be repli-
cated at many locations ("natural replication of data") [7].
In a perfect scenario (assuming a large project) there is no
possibility of a single point of failure, because all content of
every developer gets distributed to at least one other devel-
oper, where in a case of data loss the developer can restore
his code. The aptitude of this assumption will be discussed
later.

The consistency aspect of reliability is achieved through
technical features. Git for example creates a cryptograph-
ically secure hash with the SHA-1 algorithm through the
path in the tree and the content of a Git-object (see section
4). If a Git-object is created on the check-in of some con-
tent, a SHA-1 hash is created through the content. On an op-
eration like for example check-out, Git checks the content
against this SHA-1 hash and tells the developer if any kind
of corruption occurred. So one can trust the code pulled
from a repository - whether it is local or remote. Other Dis-

tributed Version Control Systems like Bazaar and Mercurial
in fact use the same technique. But data-corruption is cer-
tainly not the only reason why this feature is really impor-
tant. The consistency adds security to a system: If someone
tries to modify code to be malicious on purpose and dis-
tributing it, hoping the code gets to the final product - as it
happened to the linux kernel developer team using bitkeeper
back then - which even detected the break-in attempt with a
simple crc16 check - he will fail because the attempt can be
detected and restored.

3.5 Content

Git has a different approach on treating content than Subver-
sion does. Subversion uses a "Delta Storage System" which
means it stores files and sees every check-in as a modifica-
tion on a certain file. Due to that Subversion stores only
the difference between the initial file and the modified file.
Git in contrary doesn’t save the differences but rather snap-
shots of what all files in the project are looking like. So Git
doesn’t treat content in files and folders, it treats all content
as binary large objects (blobs) which are only referenced by
a tree-object.

The disadvantages of a storage system like Subversion is,
that if you move a file to another folder (on the file system),
Subversion doesn’t notice that the file only has been moved
by containing the same contents as it did before. Instead it
marks the file as deleted in the old directory and adds the
file on the new location to the repository - with all history
lost for this item. But it isn’t as bad as it sounds, because
Subversion has a command (svn-move) that moves a file to
another directory, but if you use "normal" file system opera-
tions like mv or if you use for example the subclipse-plugin5

for eclipse, the svn-move command will not be used!
If you move a file in Git, Git recognizes that the object

already exists because it uses a SHA-1 hash to identify the
content-object. For example if you have two identical files
in different directories, Git will use only one blob for both
because the object is totally independent from its location
in the object tree. So the history of a file won’t be lost. This
approach is fast. because only the 40-bit hash has to be
compared and effective, because duplicate files are stored
only once. Furthermore Git compresses all objects which
is very effective on text-files. This drastically reduces disk
space usage of the whole repository.

If one takes a closer look at Subversion, one can see
that Subversion is referring not to single files, but rather al-
ways referring to the whole repository. On every change the
whole repository gets a new revision number. The highest
revision number represents the newest files in the repository.
On every check-out, update or commit of a file, Subversion

5http://subclipse.tigris.org/

6

stores a copy of the file in a second local (and hidden) di-
rectory ".svn", to keep track of the changes made on the
local working copy to the last copy of the repository. On
a commit, the delta of the working copy to the version in
the repository is calculated on the client. Only the delta of
the two files is sent to the Subversion-server. But as in Git,
check-ins are atomic, which means, if one file-commit fails,
the whole commit will be undone.

One can understand the approach of Subversion, using
deltas to save disk space. If one keeps in mind that Subver-
sions development was started in 2000 and is the derivative
of CVS, one can imagine that the Subversion was focused
on disk space as well with users having a hard disk drives
with only a few gigabytes that time.

For the full detail of the Git object model, see section 4

3.6 Summary
To summarize the last section, Git is a Distributed Version
Control System, meaning every developer has his own lo-
cal repository. Local repositories provide a fast access time
to the repository and allow disconnected operations. This
provides for good performance and availability. Gits object
model ensures, that data is stored efficiently, compressed
and secure, with a special focus on the content. This pro-
vides reliability and security, so that repositories are effi-
ciently stored locally and can be shared between developers
in a distributed scenario. Another performance issue, con-
trary to other Distributed Version Control Systems, is the
use of the C as programming language. Git uses about 55%
C code which is faster than Python or Perl used in Mercurial
or Bazaar. A special DVCS is Darcs, which uses Haskell.

4 Git Object Model
The following section is a short summary of how the Git
object model looks like and should only serve as a brief
introduction. More detailed information can be found in the
online-books: Git-Book [13] (official) or Pro-Git [12].

4.1 Git Objects
All physical files which are under revision control by Git are
stored as git objects. An object is identified by a SHA1-hash
of its content. The content of an object is gzip-compressed.
Besides the content an object has a content size and a type.
Git defines three types of objects: blobs, commits and trees.
A blob-object represents the content of a file. A commit-
object contains information about the root tree which was
committed, the author and the committer. And a tree-object
contains information about its subtrees and the blobs in the
tree. Branches, remote-tracking branches, and tags are all
references to commits.

Figure 3: Example Git objects

Every file in Git is represented as a Git-object, but Git
internally distinguishes between two kinds of objects: loose
objects and packed objects.

4.1.1 Loose objects

A loose object is a simple representation of a Git-object,
which stores the compressed data in a single file on the disk.
If the object type is a blob, it contains the file data, if it is
a tree it contains the tree infos. Each object is written to a
separate file in the filesystem and all of these objects consist
of just the compressed data plus a header identifying their
length and their type.

So every time a new file is added to Git and gets
committed, Git creates a new object for every file, a tree
object for every folder, a commit object for every commit
and creates or updates the head pointer to that commit.

There are a few commands in git, where one can manually
lookup how git arranges the data. The following commands
show how the contents of a commit, a tree, and a blob look
like.

Commit example
g i t show−r e f −−heads
31 d74b06c98ed779c5b3dd0565f8517c0c0b82f3 r e f s / heads / m a s t e r

g i t c a t−f i l e −t 31 d74b06c98ed779c5b3dd0565f8517c0c0b82f3
commit

g i t c a t−f i l e commit 31 d74b06c98ed779c5b3dd0565f8517c0c0b82f3
t r e e 553 d7d3af042dbc372b47d33020b51d6f7a70165
p a r e n t c928d27d2503ec1a18f8c245e2f1a996bfe1d793
a u t h o r d a n i e l . kuhn < d a n i e l . kuhn@c30caeda−8a65−0410−9622−a86fec2c9975 >
1257266756 +0000
c o m m i t t e r d a n i e l . kuhn < d a n i e l . kuhn@c30caeda−8a65−0410−9622−a86fec2c9975 >
1257266756 +0000

my commit message

Explanation:
git show-ref –heads: shows the head-commit
git cat-file -t: shows the type of an object
git git cat-file commit: shows the contents of the commit
object

Tree example
g i t l s−t r e e cdf19197574e343118a7ab9779984b01d426e3d7
100644 b lob 7 b3d68982c93d0321c39b76d53d4c144c8cfdce7 R e s t C o n f i g S e r v i c e . a s
100644 b lob 41 ebe106eb4b fa00743979c2ec7cd0aca3a34dfa R e s t P h o t o S e r v i c e . a s
100644 b lob bd4b2d13d03151091d57dfcaa7abdf4d41d61cd9 R e s t P o p e S e r v i c e . a s
100644 b lob 98 f1b8fd1b35b53e430ed80134b487f7d07621f5 R e s t R e q u e s t . a s

7

100644 b lob 494383 e12bb97455da7e35330dcc811e0b581eb7 R e s t S k i n S e r v i c e . a s
100644 b lob 3 e811f7cd98c730033c74e769074835ea1154e85 R e s t U s e r S e r v i c e . a s
040000 t r e e e8edd262b155bc05985433ad0dfa967698230f f8 r p c

g i t l s−t r e e e8edd262b155bc05985433ad0dfa967698230f f8
040000 t r e e a e 6 a 8 a 0 e c 9 6 d b 6 5 2 8 4 7 0 8 4 c 9 f 7 c 4 0 5 a f e f c f c e 3 c e v e n t s
040000 t r e e c7ec288108f19df8c81cd9df2cdad262dbeac980 r e s t

Explanation:
git ls-tree: shows the references of a tree object

Commit example

g i t c a t−f i l e b lob 7 b3d68982c93d0321c39b76d53d4c144c8cfdce7
/∗∗
∗ @author : D a n i e l Kuhn
∗ C l i e n t s i d e c o n n e c t o r t o t h e e d i t o r−backend REST−s e r v i c e .
∗
∗ ∗/

package org . dom . r e s t
{
. . .

Explanation:
git cat-file blob: shows the contents of a blob object

4.1.2 Packfiles

Besides the loose objects there are the packfiles, which are
little more complex. In general git stores every new version
of a file in a new loose object on the disk, even if there are no
big changes done to it. At this time there is no delta system
to store only the differences (e.g. like it is in Subversion).
This approach has two major advantages: it is cheap consid-
ering write/read and fast, but it is a waste of disk space with
the project growing. Therefore git uses a packfile which is
generated when the command “git-gc” is called. Git then
rewrites the loose objects to the packfile format to save only
the parts that have changed over different versions, with a
pointer to the file it is similar to, using “a rather complicated
heuristic to determine which files are likely most similar and
base the deltas off that analysis” 6. This packfile is only an
internal format of git and doesn’t change the way to access
the files manually. It does however affect the speed of the
file access, because it is more expensive to read a packfile
than loose object files.

For every packfile created, Git creates two actual files
on the filesystem: the packfile-index (.idx) and the packfile
(.pack). Both files are beeing stored under the .git/object-
s/pack/ directory. The .pack file contains the actual data,
accompanied by metadata like version, entries and a check-
sum. Every data entry in the .pack file contains its own
metadata like object type and size.

6http://book.git-scm.com/7_how_git_stores_objects.html

Figure 4: packfile format

The index of the packfile contains a fanout (size), the
sha1, the crc and the packfile offset (32bit or 64bit when
larger then 2 gigabytes) of every object packed in the
packfile. Which means, that if you have 5 objects in one
packfile, you have 5 fanout entries, 5 sha1 entries and so
on. The index futhermore contains a header and a trailer
with the .pack-file checksum and the index-file checksum.

Figure 5: packfile index format

8

There is a very detailed, down to the bit, explaination of
the packfile-format, which can be found under 7.

4.2 Index
A Git repository contains one (hidden) “.git” directory,
which has the following structure:
− . g i t
−− HEAD (f i l e)
−− b r a n c h e s (d i r e c t o r y)
−− c o n f i g (f i l e)
−− i n d e x (f i l e)
−− i n f o (d i r e c t o r y)
−− l o g s (d i r e c t o r y)
−− o b j e c t s (d i r e c t o r y)
−− packed−r e f s (f i l e)
−− r e f s (d i r e c t o r y)
−− r e m o t e s (d i r e c t o r y)

Git contains an index which is stored as a binary file in
the “.git” directory (.git/index). It contains all blob objects,
each with their SHA-1, their permissions, their path-name
and some additional data (such as the modification date)
sorted by their path-name.

The Git index has the following purposes:

1. Tree-object generation – a commit generates his tree
objects from the index

2. The index defines the working tree

3. Fast-comparison – the modification date is used to de-
termine quickly which files in the directory differ from
the ones in the index. This is faster than a one by one
comparison or a SHA-1 calculation

4. Merging – it can effectively represent information
about merge conflicts between different tree objects.
During a merge, the index can be storing multiple ver-
sions of a file

Unlike Subversion, which stores a .svn folder in ev-
ery folder inside the repository, git contains only one .git
folder in the repository root directory. Furthermore the .git
folder contains all information about the whole repository,
whereas the .svn folders contain only the information for its
folder it is in, and contains only information about the last
revision. The difference is sure an effect of having a local
repository or a central one. But the a central place to keep
information makes it also easy to maintain.

4.3 Commit process
If a file, which is already under version control and has been
commited, has changed , Git generates a new blob-type ob-
ject with a new SHA-1 name and stores it in the objects
folder. For every folder -from the root directory to the di-
rectory the file is in- new tree-type objects are created. So if

7http://book.git-scm.com/7_the_packfile.html

a file lies in gitroot/models/storage/ two new tree-type ob-
jects are being created. The new tree objects contain ref-
erences to every blob or tree object, including the newly
created ones. Besides the tree objects a new commit-type
object is being created with a reference to the root tree-type
object, the commiter, the author and the SHA-1 hash of the
parent commit object. Afterwards the actual branch object
(eg. Master) is led to the new commit object. During this
commit process old objects are neither being deleted nor
packed.

Figure 6: Example commit process

4.4 Transfer protocols

Git can push and pull data from and to repositories in three
different ways: over HTTP, over the Git protocol or locally.

Local: A local push or pull via a local path is the
easiest way to sync data between repositories. By just
calling #git push (or pull) /somepath/somerepository, Git
syncs the local repository to another local one. This is the
easiest and fastest way and even possible over a network
share (eg. samba) or via sshfs.

HTTP: By fetching Data over HTTP you can pull
data from a repository on a webserver without having a
separate git server installed. If the .git directory is accessi-
ble via HTTP Git can pull the data by calling #git http-fetch
http://someweburl/. HTTP access to a Git repository is
always read only. Github for example offers the choice
between HTTP or Git-protocol for non-contributers.

9

Git Protocol: Fetching data with the upload pack is
the best solution and more efficient than HTTP. Git opens
a socket over ssh or over port 9418 (when using the git://
protocol). Unlike HTTP the client does not download the
data, but it rather sends a request to the Git-server and asks
for the repository. The server now processes the request
and turns it into a git-upload-pack call which streams the
packfiles down to the client. Pushing data over the Git
protocol is quite similar. The Client sends a request to the
Git-Server which opens a receive-pack instance, which
is started up if the client has access to. When the client
calls #git push git://someurl/project.git the client starts up
a send-pack process and the server starts up a receive-pack
process. Afterwards the client streams the packfiles to the
server.

More information about the Git transfer protocols can
be found in the Git Community Book under http://book.git-
scm.com/7_transfer_protocols.html.

5. Conclusion
Centralized VCS systems are designed with the intent that
there be only one central repository. All developers work
from that source and make their changes, which then be-
come a part of that source. The only real difference between
all the centralized VCS is in the workflow, performance, and
integration that each product offers.

Distributed VCS systems are designed with the intent
that one repository is as good as any other. Sharing the code
between these repositories is just a form of communication
over certain protocols. Any semantic value like trust or se-
curity is not defined by the software itself.

Distributed Version Control Systems solve problems dif-
ferently than centralized VCS. Comparing the two systems
in the first place feels like comparing screwdrivers with
hammers, but if you dig deeper, they are just two differ-
ent systems for one and the same problem: collaboration
on sourcecode. Both systems solve the problem. They just
do it with different characteristics in the means of backup,
security, reliability, speed, distribution and easiness. Which
system (CVCS or DVCS) is best depends on the environ-
ment it is supposed to be used in and on the preferences of
the people in charge. In my opinion, the “best system” does
not exist, because I think one can reduce it to distribution
or centralized. Things like reliability, speed and security
which are often advertised as the key features of for exam-
ple Git can easily be implemented in svn too. Git however,
being the newer system and having learned from the mis-
takes made in other VCS, has a great advantage. In imple-
mentation and design Git is clearly the better system than
e.g. SVN right now.

The real choice between using CVCS or DVCS is orga-

nizational. If your project or organization wants centralized
control, then a DVCS is a no-go. If your developers are ex-
pected to work all over the country or world, without secure
broadband connections to a central repository, then DVCS
is probably the solution. There is always the choice to use
both systems, and if you do, you will need very strict rules
and workflows.

References
[1] Patrick Braga, “C vs Python: Speed”

http://theunixgeek.blogspot.com/2008/09/c-vs-python-
speed.html, from 2008/09/07 (last visited:
2010/03/11).

[2] Sebastien Auvray, “Distributed Version Control Systems: A
Not-So-Quick Guide Through”
http://www.infoq.com/articles/dvcs-guide (last visited:
2010/07/04).

[3] John Brown, “CSV Home Website”
http://www.cvshome.org/entwicklung.html (last visited:
2010/07/04).

[4] “SCSS - The POSIX standard Source Code Control System”
http://sccs.berlios.de/ (last visited: 2010/07/04).

[5] Thomas Weber, “Subversion - Der Nachfolger f§r CVS”
http://www.trivadis.com/uploads/tx_cabagdownloadarea/Subversion_Art.pdf,
from 2005/02/16 (last visited: 2010/07/04).

[6] Ian Clatworthy “Distributed Version Control Systems Ð Why
and How”
http://ianclatworthy.files.wordpress.com/2007/10/dvcs-why-
and-how3.pdf (last visited:
2010/07/04).

[7] Linus Torvalds, “Goolge Tech Talk - Linus Torvalds talks on
Git” http://www.youtube.com/watch?v=4XpnKHJAok8, from
2007/05/03 (last visited: 2010/07/04).

[8] Randal Schwartz, “Goolge Tech Talk - Randal Schwartz talks
on Git” http://www.youtube.com/watch?v=8dhZ9BXQgc4,
from 2007/10/12 (last visited: 2010/07/04).

[9] Mark Stosberg, “Interview with David Roundy of Darcs on
Source Control” http://osdir.com/Article2571.phtml, from
2004/11/23 (last visited: 2010/07/04).

[10] “Benchmark results”
http://lists.osuosl.org/pipermail/darcs-users/2008-
December/016757.html, from 2008/12/23 (last visited:
2010/07/04).

[11] “Darcs vs Git: mathematician versus engineer”
http://www.3ofcoins.net/2008/12/16/darcs-vs-git-
mathematician-versus-engineer/, from 2008/12/16 (last
visited: 2010/07/04).

10

[12] “Pro Git ÐÊprofessional version control”
http://progit.org/book/ (last visited: 2010/07/04).

[13] “Git Community Book” http://book.git-scm.com (last
visited: 2010/07/04).

11

